Copied to
clipboard

?

G = C22×C4.Dic5order 320 = 26·5

Direct product of C22 and C4.Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×C4.Dic5, C20.74C24, C24.5Dic5, (C23×C4).9D5, C52C813C23, C106(C2×M4(2)), C4.73(C23×D5), C56(C22×M4(2)), (C2×C10)⋊15M4(2), C10.62(C23×C4), (C23×C10).17C4, (C22×C20).56C4, (C23×C20).16C2, C2.3(C23×Dic5), (C2×C20).799C23, C20.239(C22×C4), (C22×C4).472D10, C23.35(C2×Dic5), C4.38(C22×Dic5), (C22×C4).18Dic5, (C22×C20).546C22, C22.28(C22×Dic5), (C2×C20).473(C2×C4), (C2×C52C8)⋊48C22, (C22×C52C8)⋊23C2, (C2×C4).86(C2×Dic5), (C2×C4).827(C22×D5), (C2×C10).306(C22×C4), (C22×C10).208(C2×C4), SmallGroup(320,1453)

Series: Derived Chief Lower central Upper central

C1C10 — C22×C4.Dic5
C1C5C10C20C52C8C2×C52C8C22×C52C8 — C22×C4.Dic5
C5C10 — C22×C4.Dic5

Subgroups: 542 in 298 conjugacy classes, 207 normal (17 characteristic)
C1, C2, C2 [×6], C2 [×4], C4, C4 [×7], C22 [×11], C22 [×12], C5, C8 [×8], C2×C4 [×28], C23, C23 [×6], C23 [×4], C10, C10 [×6], C10 [×4], C2×C8 [×12], M4(2) [×16], C22×C4 [×2], C22×C4 [×12], C24, C20, C20 [×7], C2×C10 [×11], C2×C10 [×12], C22×C8 [×2], C2×M4(2) [×12], C23×C4, C52C8 [×8], C2×C20 [×28], C22×C10, C22×C10 [×6], C22×C10 [×4], C22×M4(2), C2×C52C8 [×12], C4.Dic5 [×16], C22×C20 [×2], C22×C20 [×12], C23×C10, C22×C52C8 [×2], C2×C4.Dic5 [×12], C23×C20, C22×C4.Dic5

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, M4(2) [×4], C22×C4 [×14], C24, Dic5 [×8], D10 [×7], C2×M4(2) [×6], C23×C4, C2×Dic5 [×28], C22×D5 [×7], C22×M4(2), C4.Dic5 [×4], C22×Dic5 [×14], C23×D5, C2×C4.Dic5 [×6], C23×Dic5, C22×C4.Dic5

Generators and relations
 G = < a,b,c,d,e | a2=b2=c4=1, d10=c2, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 76)(22 77)(23 78)(24 79)(25 80)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(81 123)(82 124)(83 125)(84 126)(85 127)(86 128)(87 129)(88 130)(89 131)(90 132)(91 133)(92 134)(93 135)(94 136)(95 137)(96 138)(97 139)(98 140)(99 121)(100 122)(101 157)(102 158)(103 159)(104 160)(105 141)(106 142)(107 143)(108 144)(109 145)(110 146)(111 147)(112 148)(113 149)(114 150)(115 151)(116 152)(117 153)(118 154)(119 155)(120 156)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 21)(17 22)(18 23)(19 24)(20 25)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(88 111)(89 112)(90 113)(91 114)(92 115)(93 116)(94 117)(95 118)(96 119)(97 120)(98 101)(99 102)(100 103)(121 158)(122 159)(123 160)(124 141)(125 142)(126 143)(127 144)(128 145)(129 146)(130 147)(131 148)(132 149)(133 150)(134 151)(135 152)(136 153)(137 154)(138 155)(139 156)(140 157)
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 66 51 76)(42 67 52 77)(43 68 53 78)(44 69 54 79)(45 70 55 80)(46 71 56 61)(47 72 57 62)(48 73 58 63)(49 74 59 64)(50 75 60 65)(81 119 91 109)(82 120 92 110)(83 101 93 111)(84 102 94 112)(85 103 95 113)(86 104 96 114)(87 105 97 115)(88 106 98 116)(89 107 99 117)(90 108 100 118)(121 153 131 143)(122 154 132 144)(123 155 133 145)(124 156 134 146)(125 157 135 147)(126 158 136 148)(127 159 137 149)(128 160 138 150)(129 141 139 151)(130 142 140 152)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 94 6 99 11 84 16 89)(2 83 7 88 12 93 17 98)(3 92 8 97 13 82 18 87)(4 81 9 86 14 91 19 96)(5 90 10 95 15 100 20 85)(21 112 26 117 31 102 36 107)(22 101 27 106 32 111 37 116)(23 110 28 115 33 120 38 105)(24 119 29 104 34 109 39 114)(25 108 30 113 35 118 40 103)(41 136 46 121 51 126 56 131)(42 125 47 130 52 135 57 140)(43 134 48 139 53 124 58 129)(44 123 49 128 54 133 59 138)(45 132 50 137 55 122 60 127)(61 153 66 158 71 143 76 148)(62 142 67 147 72 152 77 157)(63 151 68 156 73 141 78 146)(64 160 69 145 74 150 79 155)(65 149 70 154 75 159 80 144)

G:=sub<Sym(160)| (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,76)(22,77)(23,78)(24,79)(25,80)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,121)(100,122)(101,157)(102,158)(103,159)(104,160)(105,141)(106,142)(107,143)(108,144)(109,145)(110,146)(111,147)(112,148)(113,149)(114,150)(115,151)(116,152)(117,153)(118,154)(119,155)(120,156), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,21)(17,22)(18,23)(19,24)(20,25)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,101)(99,102)(100,103)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,66,51,76)(42,67,52,77)(43,68,53,78)(44,69,54,79)(45,70,55,80)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65)(81,119,91,109)(82,120,92,110)(83,101,93,111)(84,102,94,112)(85,103,95,113)(86,104,96,114)(87,105,97,115)(88,106,98,116)(89,107,99,117)(90,108,100,118)(121,153,131,143)(122,154,132,144)(123,155,133,145)(124,156,134,146)(125,157,135,147)(126,158,136,148)(127,159,137,149)(128,160,138,150)(129,141,139,151)(130,142,140,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,94,6,99,11,84,16,89)(2,83,7,88,12,93,17,98)(3,92,8,97,13,82,18,87)(4,81,9,86,14,91,19,96)(5,90,10,95,15,100,20,85)(21,112,26,117,31,102,36,107)(22,101,27,106,32,111,37,116)(23,110,28,115,33,120,38,105)(24,119,29,104,34,109,39,114)(25,108,30,113,35,118,40,103)(41,136,46,121,51,126,56,131)(42,125,47,130,52,135,57,140)(43,134,48,139,53,124,58,129)(44,123,49,128,54,133,59,138)(45,132,50,137,55,122,60,127)(61,153,66,158,71,143,76,148)(62,142,67,147,72,152,77,157)(63,151,68,156,73,141,78,146)(64,160,69,145,74,150,79,155)(65,149,70,154,75,159,80,144)>;

G:=Group( (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,76)(22,77)(23,78)(24,79)(25,80)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,129)(88,130)(89,131)(90,132)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,121)(100,122)(101,157)(102,158)(103,159)(104,160)(105,141)(106,142)(107,143)(108,144)(109,145)(110,146)(111,147)(112,148)(113,149)(114,150)(115,151)(116,152)(117,153)(118,154)(119,155)(120,156), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,21)(17,22)(18,23)(19,24)(20,25)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,115)(93,116)(94,117)(95,118)(96,119)(97,120)(98,101)(99,102)(100,103)(121,158)(122,159)(123,160)(124,141)(125,142)(126,143)(127,144)(128,145)(129,146)(130,147)(131,148)(132,149)(133,150)(134,151)(135,152)(136,153)(137,154)(138,155)(139,156)(140,157), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,66,51,76)(42,67,52,77)(43,68,53,78)(44,69,54,79)(45,70,55,80)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65)(81,119,91,109)(82,120,92,110)(83,101,93,111)(84,102,94,112)(85,103,95,113)(86,104,96,114)(87,105,97,115)(88,106,98,116)(89,107,99,117)(90,108,100,118)(121,153,131,143)(122,154,132,144)(123,155,133,145)(124,156,134,146)(125,157,135,147)(126,158,136,148)(127,159,137,149)(128,160,138,150)(129,141,139,151)(130,142,140,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,94,6,99,11,84,16,89)(2,83,7,88,12,93,17,98)(3,92,8,97,13,82,18,87)(4,81,9,86,14,91,19,96)(5,90,10,95,15,100,20,85)(21,112,26,117,31,102,36,107)(22,101,27,106,32,111,37,116)(23,110,28,115,33,120,38,105)(24,119,29,104,34,109,39,114)(25,108,30,113,35,118,40,103)(41,136,46,121,51,126,56,131)(42,125,47,130,52,135,57,140)(43,134,48,139,53,124,58,129)(44,123,49,128,54,133,59,138)(45,132,50,137,55,122,60,127)(61,153,66,158,71,143,76,148)(62,142,67,147,72,152,77,157)(63,151,68,156,73,141,78,146)(64,160,69,145,74,150,79,155)(65,149,70,154,75,159,80,144) );

G=PermutationGroup([(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,76),(22,77),(23,78),(24,79),(25,80),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(81,123),(82,124),(83,125),(84,126),(85,127),(86,128),(87,129),(88,130),(89,131),(90,132),(91,133),(92,134),(93,135),(94,136),(95,137),(96,138),(97,139),(98,140),(99,121),(100,122),(101,157),(102,158),(103,159),(104,160),(105,141),(106,142),(107,143),(108,144),(109,145),(110,146),(111,147),(112,148),(113,149),(114,150),(115,151),(116,152),(117,153),(118,154),(119,155),(120,156)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,21),(17,22),(18,23),(19,24),(20,25),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(88,111),(89,112),(90,113),(91,114),(92,115),(93,116),(94,117),(95,118),(96,119),(97,120),(98,101),(99,102),(100,103),(121,158),(122,159),(123,160),(124,141),(125,142),(126,143),(127,144),(128,145),(129,146),(130,147),(131,148),(132,149),(133,150),(134,151),(135,152),(136,153),(137,154),(138,155),(139,156),(140,157)], [(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,66,51,76),(42,67,52,77),(43,68,53,78),(44,69,54,79),(45,70,55,80),(46,71,56,61),(47,72,57,62),(48,73,58,63),(49,74,59,64),(50,75,60,65),(81,119,91,109),(82,120,92,110),(83,101,93,111),(84,102,94,112),(85,103,95,113),(86,104,96,114),(87,105,97,115),(88,106,98,116),(89,107,99,117),(90,108,100,118),(121,153,131,143),(122,154,132,144),(123,155,133,145),(124,156,134,146),(125,157,135,147),(126,158,136,148),(127,159,137,149),(128,160,138,150),(129,141,139,151),(130,142,140,152)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,94,6,99,11,84,16,89),(2,83,7,88,12,93,17,98),(3,92,8,97,13,82,18,87),(4,81,9,86,14,91,19,96),(5,90,10,95,15,100,20,85),(21,112,26,117,31,102,36,107),(22,101,27,106,32,111,37,116),(23,110,28,115,33,120,38,105),(24,119,29,104,34,109,39,114),(25,108,30,113,35,118,40,103),(41,136,46,121,51,126,56,131),(42,125,47,130,52,135,57,140),(43,134,48,139,53,124,58,129),(44,123,49,128,54,133,59,138),(45,132,50,137,55,122,60,127),(61,153,66,158,71,143,76,148),(62,142,67,147,72,152,77,157),(63,151,68,156,73,141,78,146),(64,160,69,145,74,150,79,155),(65,149,70,154,75,159,80,144)])

Matrix representation G ⊆ GL5(𝔽41)

10000
040000
004000
000400
000040
,
400000
040000
004000
00010
00001
,
10000
01000
00100
00090
000032
,
10000
019100
0161600
000390
000021
,
400000
0371500
018400
00001
00090

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,32],[1,0,0,0,0,0,19,16,0,0,0,1,16,0,0,0,0,0,39,0,0,0,0,0,21],[40,0,0,0,0,0,37,18,0,0,0,15,4,0,0,0,0,0,0,9,0,0,0,1,0] >;

104 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L5A5B8A···8P10A···10AD20A···20AF
order12···222224···44444558···810···1020···20
size11···122221···122222210···102···22···2

104 irreducible representations

dim111111222222
type+++++-+-
imageC1C2C2C2C4C4D5M4(2)Dic5D10Dic5C4.Dic5
kernelC22×C4.Dic5C22×C52C8C2×C4.Dic5C23×C20C22×C20C23×C10C23×C4C2×C10C22×C4C22×C4C24C22
# reps12121142281414232

In GAP, Magma, Sage, TeX

C_2^2\times C_4.Dic_5
% in TeX

G:=Group("C2^2xC4.Dic5");
// GroupNames label

G:=SmallGroup(320,1453);
// by ID

G=gap.SmallGroup(320,1453);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,1123,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^10=c^2,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^9>;
// generators/relations

׿
×
𝔽